
www.manaraa.com

Contact Author: Ashis Tarafdar (ashis@cs.utexas.edu)Tracks: Long Presentation (if not selected in the Long Presentation Track, please consider the abstractfor the Brief Announcement Track)Student Paper: Yes. Ashis Tarafdar is a full-time student

1

www.manaraa.com

Predicate Control in Distributed SystemsAshis Tarafdar � Vijay K. Garg yashis@cs.utexas.edu garg@ece.utexas.eduDept. of Computer Sciences Dept. of Computer and Electrical EngineeringUniversity of Texas at Austin, Austin, TX 78712AbstractA number of important problems in asynchronous distributed systems can be formulated as specialcases of the notion of controlling a distributed system to maintain global properties. We formalize thisnotion by de�ning the predicate control problem in terms of boolean global predicates and a model ofdistributed control. The problem arises in both o�-line and on-line scenarios. We prove that generalo�-line predicate control is NP-Hard. However, we present an e�cient solution for the class of disjunctivepredicates. We show that on-line predicate control, on the other hand, is impossible to achieve even fordisjunctive predicates. However, by placing restrictions on the underlying system, we are able to presentan e�ective on-line control strategy.1 IntroductionAn intrinsic problem in asynchronous distributed systems is that while no one process can have a globalview, we still require the system as a whole to maintain global properties. This conict has led to thedesign of distributed algorithms which specify the manner in which processes cooperate to maintain aglobal property. We call problems which require distributed control of a global property distributed controlproblems . Generally, each type of global property has been studied as a separate distributed controlproblem. Some classic examples are: distributed mutual exclusion [17], distributed resource allocation [3],load balancing [2], and distributed consensus [6]. The safety aspects of each of these problems and manyothers could be expressed as some global property which must be maintained.Our approach, predicate control , is to de�ne a control mechanism for a distributed system, given ageneral global property. The global properties corresponding to the example problems stated above arecomplex. Hence, we might expect that such a generalized approach be limited in its ability to e�cientlysolve them. However, it is insightful to discover the limitations of the predicate control approach and todetermine if there is a class of simple distributed control problems for which such an approach may providean e�cient solution.Such a generalization attempt is not without precedent. Another important problem in distributedsystems is distributed detection of global properties. It has been studied in specialized forms such astermination detection [4] and deadlock detection [10]. However, studies in predicate detection [7] have gen-eralized the problem to the detection of arbitrary predicates, provided an understanding of its limitations,and de�ned classes of predicates for which an e�cient general solution is possible.We are aware of two previous studies of the general distributed control problem. One study [13]allows global properties within the class of conditional elementary restrictions [13]. Unlike our model ofa distributed system, their model uses an o�-line speci�cation of pair-wise mutually exclusive states anddoes not use causality. [18] and [21] study the on-line maintenance of a class of global properties based�supported in part by the MCD Fellowshipysupported in part by the NSF Grants ECS-9414780, CCR-9520540, TRW faculty assistantship award, a General MotorsFellowship, and an IBM grant 1

www.manaraa.com

on ensuring that a sum or sum-of-product expression on local variables does not exceed a threshold. Incontrast to these approaches, our focus will be on general global properties and the class of disjunctivepredicates. We also study both the on-line and o�-line variants of the control problem.Our model of a distributed system assumes asynchronous processes communicating with messages.Control of a global property is achieved by superimposing a distinct distributed control system on theunderlying distributed system. The control system is entirely transparent to the underlying system. Itconsists of controllers, one for each process, which communicate using independent control messages andwhich are capable of monitoring and controlling the underlying process. In particular, they can predictthe next state of a process and can block the process inde�nitely. The underlying process perceives theblocking action as a slowing down in its processor speed. Since the underlying system may have itsown blocking, the controller's blocking action may cause deadlocks where none existed before. It is thecontroller's responsibility to ensure that this does not happen.In asynchronous distributed systems, we distinguish between a computation and an execution. Thisdistinction does not exist for sequential systems. Running a distributed system results in many possiblecomputations, each of which corresponds to multiple possible executions. A computation speci�es a partial-ordering of local states which can be determined by the sequence of local states on each process and theordering of message receives. An execution is a sequence of global states of the system determined byprocessor speeds and message delays. Our problem will be to control the system to suppress bad executionswhich do not satisfy the required global property.Since, in the control system we have described, the controllers can only predict the next state of theirprocesses, we say that they are provided with the underlying computation on-line. They are expectedto restrict the possible executions allowable within that computation to only those which satisfy thestated global property. We call this scenario the on-line predicate control problem. If we assume thateach controller is provided with the entire underlying computation a priori , then a better control strategyshould be possible. We call this scenario the o�-line predicate control problem. Even though the underlyingcomputation is predetermined in the o�-line problem, there is still exibility in the possible executions thatthe system may go through. The o�-line control strategy must restrict these possible executions.It may seem unreasonable to assume a predetermined underlying computation in o�-line predicatecontrol. However, there are some cases where a system may be run once and a trace of its underlyingcomputation (process states and message orderings) may be made. It may then be necessary to run it againmaintaining the same computation. Three areas where this naturally occurs are distributed debugging,distributed recovery and distributed simulations.� In distributed debugging [12], we may discover a bug in a particular computation of the distributedsystem and might wish to replay the same computation to localize the bug. Since the bug may occurin certain executions of the computation while not in others, we may wish to specify some globalproperty which restricts our attention to suspicious executions.� In distributed recovery [5], processes may fail and may have to recover in a manner consistent withthe message orderings and sequence of events that they have logged in the past. In this case thepredetermined computation of the recovering system is speci�ed in the message logs. While replayingthe logs, it might be desired to specify some global property among the recovering processes to preventbad executions which possibly caused the failures in the �rst place.� In distributed simulations [9], the message ordering and sequence of events is �xed in simulation time.So, every run of the simulation would follow the same computation but would have multiple possibleexecutions. In optimistic distributed simulation schemes, owing to a bad scheduling of events, thesystem may have to backtrack and restart. To prevent the same bad scheduling of events, we mayspecify some global property for the restarted system to maintain.2

www.manaraa.com

For the control problem, we could express the global property as a boolean expression of local atomicpredicates each corresponding to some local property on a process. We call this boolean expression a globalpredicate. We will also be interested in a class of global predicates called disjunctive predicates consistingof a disjunction of local predicates.The predicate control problem is to construct a control system that does not cause deadlocks and ensuresthat every possible execution of the controlled distributed system always satis�es a global predicate. Asolution to the problem must either construct a control system or inform us that the global predicate cannever be satis�ed in the underlying distributed computation (for example, if the initial state itself does notsatisfy the speci�ed predicate).We �rst study the possibility of solving the predicate control problem in its full generality. We show thatthe decision problem corresponding to the o�-line case is equivalent to �nding whether a satisfying globalexecution exists in a distributed computation. We prove that this problem is NP-complete by transformingSatis�ability to it. Therefore, the o�-line predicate control problem is NP-hard in its full generality.Next, we try to restrict the problem. We choose the class of disjunctive predicates because they forma simple, yet interesting, class of problems. The corresponding class of conjunctive predicates could besimply controlled by each controller maintaining the local predicate for its process independently. Since adisjunctive predicate speci�es that at least one of the local predicates remains true at any global state, thecontrollers must coordinate in order to satisfy it. Although disjunctive predicates seem to be restrictive,there is a category of real world problems that falls within their scope. These are problems which specifythat a certain bad combination never occurs at the same time. A good example of such a situation istwo-process mutual exclusion where we specify that either one process or the other process is not in thecritical section at any time. Another example is the classic dining philosopher's problem where deadlocksmay be prevented by specifying that at least one of the philosophers must be thinking at any time.We solve the o�-line predicate control problem for disjunctive predicates by constructing a central-ized algorithm which takes the given information about the predetermined underlying computation andproduces a control strategy. The controllers follow this control strategy to ensure that the predicate ismaintained in every global state and no deadlock occurs. The algorithm also determines if no controlscheme exists for a given underlying computation. If there are n processes and a local predicate has amaximum of p changes in value during the computation, then the time complexity of our algorithm isO(n2p) and the message complexity is O(np). As a measure of the concurrency allowed by our controlstrategy, there are O(np) one-way, two process synchronizations.Next, we show that it is impossible to solve the problem of on-line predicate control for disjunctivepredicates (and hence, for general predicates). This is a result of the controllers ignorance of the future ofthe underlying computation beyond the next state. When a controller makes a decision, an adversary canalways ensure that for the decision it makes the system would deadlock, whereas for the other choice therewould be a valid computation. However, we impose certain restrictions to prevent deadlocks and providea solution. We show that the on-line predicate control problem for disjunctive predicates is equivalent tothe (n � 1)-mutual exclusion problem. This is a special case of the general k-mutual exclusion problemwhich has been studied in [1, 8, 14, 16, 20]. We show that in the special case of k = n� 1, it is possible todo better than applying the general k-mutual exclusion algorithms.In Section 2, we de�ne our model and problems. In Section 3, we show that o�-line predicate controlis NP-hard. In Section 4, we address o�-line predicate control for disjunctive predicates and in Section 5,we do the same for the on-line case. In Section 6, we discuss our conclusions.2 Model and Problem Speci�cation2.1 Model of a Distributed System The distributed system consists of n sequential processes P1, P2,: : : , Pn which can send messages to one another over reliable channels. The system is loosely-coupled andasynchronous . Message ordering is arbitrary.2.2 Model of a Distributed Computation Each process, i, executes a sequence of states and events3

www.manaraa.com

starting with a special start state, ?i, and ending with a special �nal state, >i. An event takes the processfrom one state to another. An event may be a local event, a message send event, or a message receiveevent. A state corresponds to the values of all variables in the process.For two states s and t in the same process, s�imt denotes that s immediately precedes t in the sequentialexecution of the process. � (precedes) denotes the transitive closure of �im. We say s ; t (s remotelyprecedes t) if the message sent in the event after s is received in the event before t. Given these relations,the causally precedes (happened before) relation [11], !, is de�ned as the transitive closure of the unionof �im and ;. Note that ! is an irreexive partial-order over states in all processes. So, given any twostates s and t, either s!t or t!s or neither causally precedes the other, denoted by skt (s is concurrentwith t).Let Si be the sequence of local states in process Pi and let S = Si Si then a distributed computationcan be modeled as a tuple (S1; : : : ; Sn;;). We call it a deposet (decomposed partially-ordered set) [7]provided that (S;!) is an irreexive partial order and it satis�es three reasonable constraints:D1: No messages are received before the initial state.D2: No messages are sent after the �nal state.D3: A single event does not both send and receive a message.2.3 Global states and Consistency In a distributed computation modeled as a deposet, (S1; : : : ; Sn;;),we de�ne a global state to be a subset of S containing exactly one state from each sequence Si. Let G bethe set of all global states in the deposet. We de�ne an ordering relation � on G as: For two global statesG;H 2 G : G � H i� 8i : G[i] � H [i] where G[i] 2 Si and H [i] 2 Si are the states from Pi in global statesG and H respectively. It is an established fact that (G;�) is a lattice [15].A global state, G, is said to be consistent if 8x; y 2 G : xky. A consistent global state captures thenotion of a global state that could possibly occur in the distributed computation. If Gc is the set of allconsistent global states in the deposet, then (Gc;�) is also a lattice. It is easy to show using D1 and D2that the initial global state ? = (?1; : : : ;?n) and the �nal global state > = (>1; : : : ;>n) are consistent.2.4 Global Execution An actual execution of a distributed system would take it from the initialconsistent global state ? to the �nal consistent global state > through a sequence of consistent globalstates (a path in the lattice (Gc;�)). We model the global execution as a global sequence { a sequence gof consistent global states ordered by � such that restricting the sequence to any one process Pi producesthe sequence Si of states in Pi or the sequence Si with some states consecutively repeated (called a stutterof Si). Note that this does not enforce an interleaving of events since in a global sequence multiple localevents can take place simultaneously.2.5 Model of a Control System The control system is a distinct distributed system superimposed onthe underlying distributed system. The processes of the control system are a set of controllers , C1; : : : ; Cn,which communicate using control messages over channels that are independent from the underlying systemchannels. Each controller monitors and controls the underlying process. In particular, a controller is capableof determining the next state of its process and is capable of blocking the process inde�nitely. However, acontroller is not capable of altering the local computation in any other way. The underlying process wouldnot be able to distinguish between its controller's blocking action and a reduction of its execution speed.The actions of the controllers are speci�ed by a distributed control strategy .2.6 Model of a Controlled Distributed Computation On running a distributed control strategy for acontrol system, the resultant controlled distributed computation is in no way di�erent from a computationof any other distributed system. We can, therefore, model a controlled distributed computation as adeposet. This deposet would include extra control states and control messages.If we restrict the deposet to states of the underlying distributed system, then we have a valid deposetof the underlying distributed system except for extra causality between its states induced by the extracontrol messages. If we remove this extra causality, we would have the deposet that would have occurredif the control system had not existed (since the control system is transparent to the underlying system).4

www.manaraa.com

Instead of modeling the controlled computation as a deposet including control states and messages, it isconvenient to think of it as an extension to a deposet of an underlying computation with added controlcausality between its states.Given a distributed computation modeled by a deposet (S1; : : : ; Sn;;) with a causal precedence (S;!),we de�ne an extended deposet (S1; : : : ; Sn;;; C;) to consist of an extra control relation C; (for x C;y, we sayx is forced before y) between states. Each C; tuple is induced by a control message in the control systemand relates the �rst underlying state before its send and the next underlying state after its receive. Wethen de�ne an extended causal precedence (S; C!) to be the transitive closure of the unions of �im, ; andC;. The extended deposet would model a valid computation only if (S; C!) is an irreexive, partial-order.However, it is possible to de�ne a C; relation which causes cycles with ! and results in a C! that is notirreexive. We say that such a C; relation interferes with !.Since, an extended deposet is formed by restricting an actual deposet of the controlled distributedsystem, and since, given an extended deposet, it is easy to construct an actual deposet (by adding necessarycontrol states and control messages), from here on we do not distinguish between an extended deposet andan actual deposet.De�nition Given a deposet, (S1; : : : ; Sn;;), with irreexive partial-order (S;!) and a control relationC; which does not interfere with !, the resultant extended deposet (S1; : : : ; Sn;;; C;) with irreexivepartial-order (S; C!) is called the controlled deposet of S with C;.It is easy to show that the set of global sequences in the controlled deposet is a subset of the set ofglobal sequences in the original deposet. This is exactly the function expected of a control system.2.7 Global Predicates Given a deposet, (S1; : : : ; Sn;;), let Xi be the set of variables associated withPi so that each state s 2 Si de�nes a value for each variable x 2 Xi. Let X = SiXi. A global predicate,B, is a boolean-valued function of the variables in X . We use B(G) to denote the value of predicate B inthe global state G. If B(G) = true, we say that G satis�es B. Further, if for a global sequence, g, everyglobal state G in g satis�es global predicate B, then we say that g satis�es B. If for a deposet S, everypossible global sequence satis�es global predicate B, then we say that S satis�es B. If for a deposet S,at least one global sequence satis�es global predicate B, then we say that B is feasible for S. If B is notfeasible for S, we say it is infeasible for S. If for a distributed control strategy, A, every possible deposetsatis�es global predicate B, then A satis�es B. If B can be expressed as l1 _ l2 _ : : : ln where li is a localpredicate of Pi (a boolean-valued function of the variables in Xi) then B is a disjunctive predicate.2.8 Problem Speci�cationsThe O�-line Predicate Control ProblemGiven a global predicate, B, and a deposet S for the underlying system, construct a distributed controlstrategy that satis�es B, unless B is infeasible for S.The On-line Predicate Control ProblemGiven a global predicate, B, and a deposet S for the underlying system (provided on-line), construct adistributed control strategy that satis�es B, unless B is infeasible for S.On-line predicate control is obviously a harder problem than o�-line predicate control.3 O�-line Predicate Control is NP-hardWe show that the o�-line predicate control problem is NP-hard by showing that a simpler decision problemis NP-complete. The problem is de�ned as follows:Satisfying Global Sequence Detection (SGSD):Given: a deposet, (S1; : : : ; Sn;;), and a set of variables X partitioned into n subsets X1; : : : ; Xn, and a5

www.manaraa.com

global predicate B de�ned on XDetermine: if B is feasible for S (i.e. if there exists a global sequence in S that satis�es B.)Theorem 1 SGSD is NP-completeProof Outline: The problem is in NP because given a candidate global sequence, it takes polynomialtime to check that it is a valid global sequence and that it satis�es B. To show that it is NP-hard, we mapthe satis�ability problem to it. If b is the boolean expression in the satis�ability problem, then for eachvariable in b we assign a separate process with two states, one true and one false. We de�ne B = b _ xwhere x is an extra boolean variable. We de�ne another process for x which starts true, goes through afalse state, and ends true again. We then apply SGSD to �nd a satisfying global sequence. If it �nds one,then the global state with x = false will have a satisfying assignment for the variables of b. Conversely, ifb is satis�able, then there must be a satisfying global sequence. 2Note that the proof demonstrates that SGSD is NP-complete even without any synchronizations. Thepredicate control problem requires �nding a satisfying distributed control strategy, if one exists. This is asearch problem the corresponding decision problem of which is to �nd out if a satisfying distributed controlstrategy exists.Satisfying Control Strategy Detection (SCSD):Given: a deposet, (S1; : : : ; Sn;;), and a set of variables X partitioned into n subsets X1; : : : ; Xn, and aglobal predicate B de�ned on XDetermine: if there exists a distributed control strategy that satis�es B for a control system whoseunderlying computation is the deposet SWe now show that SCSD and SGSD are equivalent. Since the given data for both problems is identical,we don't have to explicitly map an instance of one problem to the other.Theorem 2 SCSD and SGSD are equivalent.Proof Outline: If there is a satisfying control strategy, then we merely have to simulate a run on itto �nd a satisfying global sequence. If there is a satisfying global sequence, then we construct an overlyrestrictive control strategy that allows only that global sequence and no other. 2Therefore, SCSD is NP-complete as well and the predicate control problem, being the correspondingsearch problem, is NP-hard.4 O�-line Predicate Control for Disjunctive PredicatesWe now restrict our attention to disjunctive predicates. We state our problem as:The O�-line Predicate Control Problem for Disjunctive PredicatesGiven a global predicate, B = l1 _ : : : _ ln, and a deposet, (S1; : : : ; Sn;;), for the underlying system,construct a distributed control strategy that satis�es B, unless B is infeasible for S.Further, we make the following assumption:A1: 8i : li(?i) ^ li(>i)In practice, this assumption is reasonable for a truly distributed system because processes know nothingabout one another before and after their computations. Hence, they must start and end in safe states.Our approach will be to construct a satisfying controlled deposet of S with C;. From the controlleddeposet, it is easy to construct a control strategy to implement it by using a control message (with ablocked receive) for every tuple in C;.We de�ne an interval , I , as a sequence of consecutive states in a process with a beginning state(designated as I:lo) and an ending state (designated as I:hi). li(Ii) denotes that li is true throughoutIi and Ii is called a true-interval . Similarly, li(Ii) denotes that the local predicate li is false throughout6

www.manaraa.com

Algorithm:Input: I[1::n] an array of queues of false-intervals in deposet S (I[i] is a queue of false-intervals of Pi with respectto li in � order). We use Ii to stand for head(I[i]).Output: C a queue of tuples of local states, initially ; and �nally corresponds to the tuples in the C; relation.Variables: g[1::n] = ? a global statek = 1; k0; l; i; x; y integersA set of integer tuplesL0 if SomeQueueEmpty(I) exit(C); (* no control required *)L1 while :SomeQueueEmpty(I) f (* exit when chain reaches a >i *)L2 A := fhx; yi j Ix:lo 6! Iy:hi ^ g[x] � Ix:log; (* �nd a true interval whichL3 if (A = ;) exit(\No Controller Exists"); can be maintained whileL4 else hk0; li := any(A); a false interval is crossed *)L5 enqueue(C; (g[k0]; Ik:lo)); (* add a C; tuple *)L6 for (i 2 f0; : : : ; ng; i 6= l) fL7 while (next(i) ! Il:hi) fL8 g[i] := next(i); (* advance gL9 if (g[i] = Ii:hi) dequeue(I[i]); consistently with ! *)ggL10 g[l] := Il:hi; (* cross one false interval *)L11 dequeue(I[l]);L12 k := k0; (* remember the true interval *)gL13 k0 := any(fxjempty(I[x])g);L14 enqueue(C; (g[k0]; Ik:lo)); (* add last C; tuple *)L15 dequeue(C); (* eliminate dummy initializer *)L16 exit(C);De�nitions:any(Z) = random element ofnon-empty set Z next(i) = (>i if I[i] is emptyIi:lo if g[i] � Ii:loIi:hi if g[i] = Ii:loFigure 1: Algorithm for O�-line Predicate Control of Disjunctive Predicatesfalse-interval Ii. A set of intervals, I1; : : : ; In, is said to overlap, represented by overlap(I1; : : : ; In), if andonly if: 8i; j 2 f1; : : : ; ng : (Ii:lo!Ij:hi). This de�nition ensures that for an overlapping set of intervals,no process can leave its interval until all other processes have entered their intervals. Therefore, if wehave an overlapping set of false-intervals, then every global sequence must contain a global state where allprocesses are false. This is stated in the following result [7]:Lemma 1 In a deposet, (S1; : : : ; Sn;;), with causal precedence (S;!), if the following condition is sat-is�ed then then there is no global sequence in S which satis�es B = l1 _ : : :_ ln.9I1; : : : ; In : l1(I1) ^ : : :^ ln(In) ^ overlap(I1; : : : ; In)Our algorithm outputs a valid C; unless an overlapping set of false-intervals is detected. The approachfollowed by our algorithm is to always maintain one process in its true interval until it knows that someother process has started its true interval. This causes a chain of true intervals connected by the C; relationwhich ensures that some process is always true. However, we must ensure that the C; used in the chaindoes not interfere with the existing !. Our algorithm ensures this by maintaining a global state g whichadvances consistently in the logical time de�ned by !. Every C; tuple starts at g and points to the futurein logical time. The algorithm is listed in Figure 1.7

www.manaraa.com

Theorem 3 The procedure in Figure 1 terminates.Proof Outline: We show that every reference to head(I [j]) (abbreviated to Ij) and dequeue(I [j]) operateson a non-empty queue. We also show that the references to any and next are well-de�ned. The innerwhile loop terminates because every two iterations dequeue one false-interval from I [i]. The outer whileloop terminates because each iteration must dequeue at least one false-interval from I . 2Theorem 4 The algorithm in Figure 1 correctly solves the O�-line Predicate Detection Problem for Dis-junctive Predicates.Proof Outline: We �rst show that when the algorithm outputs \No Controller Exists", S is infeasiblefor B. We prove the following property of global state g: either the set of false-intervals that end after itare overlapping, or at least one of those false-intervals y may be crossed while some other process x, whichis true at g (g[x] � Ix:lo), is kept true. This demonstrates the correctness of the abnormal exit in L3.Next, we show that C; does not interfere with ! as follows. For the global states de�ned by g andnext, no local state in next can precede a state in g in the logical time de�ned by !. Since each C; tuplestarts at a state in g and points towards a state in next (Ik:lo is next(k)), C; cannot interfere with !.Lastly we show that every global sequence possible in the controlled deposet of S with C; must satisfyB. Any global state must cut the chain of true intervals connected by C; tuples (since the chain extendsfrom ?i to >j for some i and j). Either it cuts the chain at a C; tuple violating the causality it imposes,or it cuts the chain in a true interval and so satis�es B. 2Complexity Analysis and Evaluation: The time complexity of the algorithm is O(n2p) where p isthe maximum number of false-intervals in a process. The naive implementation of the algorithm wouldbe O(n3p) because the outer while loop iterates O(np) times and calculating the set in L2 can take O(n2)time to check every pair of processes. However, an optimized implementation would avoid redundantcomparisons in L2 by computing the set A dynamically. Since, in this approach, each new false-intervalswould have to be compared with n � 1 existing false-intervals, the complexity is O(n2p). The size ofC; is O(np) because one tuple is outputed in each iteration of the outer while loop. Therefore, themessage complexity of control messages used is O(np). A good control strategy should also allow asmuch concurrency as possible. The ideal control strategy would only suppress the non-satisfying globalsequences while allowing all satisfying ones. While this metric is hard to de�ne, it is clear, for example,that a control strategy involving one-way, two-process synchronizations allows more concurrency than oneinvolving multiple global synchronizations. Since each control message corresponds to a one-way, two-process synchronization (the receives are blocking), we have O(np) such synchronizations.5 On-line Predicate Control for Disjunctive PredicatesWe address the following problem in this section:The On-line Predicate Control Problem for Disjunctive PredicatesGiven a global predicate, B = l1 _ : : :_ ln, and a deposet, (S1; : : : ; Sn;;), with causal precedence (S;!),for the underlying system (provided on-line), construct a distributed control strategy that satis�es B, unlessB is infeasible for S.First we show that it is, in general, impossible to solve this on-line predicate control problem.Theorem 5 The On-Line Predicate Control Problem for Disjunctive Predicates is impossible to solve.Proof Outline: For simplicity, we prove by contradiction for the case n = 2. The proof can be extendedto a general n. Our counterexample consists of two processes P1 and P2 which each start at a true state,pass through a false state, and end in a true state. The on-line controllers only know about their next8

www.manaraa.com

Distributed Control Strategy for Controller, Ci:Input: li a boolean function that takes a state as inputOn-line Input:s current state of the underlying computations0 next state of the underlying computationVariables: scapegoat = init(i) booleanpending = false booleanj; k integerControl Actions:� scapegoat ^ :li(s0): � received(req(j)):send(req(i); any(C)); if li(s) thenreceive(ack); scapegoat := true;scapegoat := false; send(ack; Cj);else� pending ^ li(s): pending := true;pending := false; k := j;scapegoat := true;send(ack; Ck);De�nitions:init(i) true for one i and false for othersC set of all controllersany(Z) randomly chosen element of non-empty set ZFigure 2: Distributed Control Strategy for On-line Predicate Control with Disjunctive Predicatesstates and so we are free to have either process send the other a message after the second state to bereceived before the third state. The controllers cannot know about this message when they start. Sincethe position is symmetric, let process P1 advance to its false second state while P2 stays in its true �rststate. We then make P2 send a message to P1 after its second state and before P1's third state. We nowhave a deadlock where none would have existed if P2 had been advanced instead. 2Note that even if we generalize on-line predicate control to allow each controller a �nite lookahead ofthe underlying computation, we could design a similar counterexample to demonstrate impossibility. Sinceit is impossible to solve the problem as it stands, we make the following assumptions:A2: 8i : Pi does not block in states where li is false .A3: 8i : li(>i)These assumptions essentially allows us to assume that a false state will eventually turn true withoutblocking. Since our control strategy will only wait for a process while it is in the false state, this preventsa circular wait from occurring, and thus prevents deadlocks. In the two-process mutual exclusion example,these assumptions would correspond to the usual assumption that a process does not block while it isinside a critical section and ends in a non-critical section.Our control strategy is similar to that used in the o�-line case. One process remains true until it issure that some other process is true. At any time, the process bearing such a responsibility is called thescapegoat . In our algorithm, listed in Figure 2, when the scapegoat reaches a false interval, it simplysends a request to some other process asking it to become the scapegoat and waits for an acknowledgment.It is easy to prove the correctness of this strategy, namely that:Theorem 6 The distributed control strategy listed in Figure 2 does not deadlock.Theorem 7 The distributed control strategy listed in Figure 2 satis�es B.9

www.manaraa.com

The k-mutual exclusion problem [1, 8, 14, 16, 20] is a generalization of the traditional mutual exclusionproblem where at most k processes can be in the critical section at the same time. For k = n � 1, thisspeci�es that at all times, at least one process must not be in the critical section. If we de�ne the false-intervals to be critical sections, our problem becomes equivalent to (n � 1)-mutual exclusion. Our simpledistributed control strategy, therefore, also solves the (n� 1)-mutual exclusion problem.Evaluation and Comparison to Existing Solutions We follow the general guidelines in [19] forevaluating mutual-exclusion algorithms. Since only the critical sections of the scapegoat cause any overheadand the remaining critical section entries do not, we measure the overhead over n critical section entries.Let T be the average message propagation delay and Emax be the maximum critical section execution time.Response time is the time delay between a request for entering the critical section and the correspondingentry. Per n critical section entries , 2 messages are required and response time is bounded between 2Tand 2T +Emax, depending on when the request arrives. We have the option of reducing the response timeat the expense of message overhead. We can devise a scheme where the scapegoat broadcasts a request toall controllers, and so has a better chance of �nding at least one of them not in the critical section.Our control strategy is seen to be simpler and more e�cient than existing solutions to the k-mutualexclusion problem [1, 8, 14, 16, 20]. when specialized to the k = n � 1 case. Although a completecomparison is beyond the scope of this presentation, the intuitive reason for this is that the k-mutualexclusion algorithms usually use k tokens or wait for k replies and thus work well when k is small. Ouralgorithm uses a single anti-token which acts as a liability rather than a privilege. This indicates that forlarge k, a di�erent class of algorithms may be more appropriate for the k-mutual exclusion problem.6 ConclusionsWe have de�ned the predicate control problem, a generalization of distributed control problems, and havede�ned two di�erent scenarios for the problem { the on-line and o�-line scenarios. Although we have shownthat it is NP-hard to solve the general o�-line problem, we demonstrate that the restricted problem for theclass of disjunctive predicates may be solved e�ciently. For the on-line scenario, we have demonstratedthe impossibility of �nding a solution even for the limited class of disjunctive predicates. However, if weimpose restrictions on the underlying computation, a solution is possible. The on-line predicate controlproblem for disjunctive predicates is equivalent to the (n� 1)-mutual exclusion problem, a special case ofthe k-mutual exclusion problem. However, we have shown that it is possible to provide a simpler and moree�cient solution to the (n � 1)-mutual exclusion problem than can be obtained by specializing existingsolutions to the k-mutual exclusion problem.There are a number of interesting directions for future research into the predicate control problem. Wehave shown that e�cient solutions exist for o�-line and on-line control of disjunctive predicates. However,a number of existing distributed control problems such as general mutual exclusion do not fall into thisclass and yet have been solved. It would be interesting to study other classes of predicates to see if ageneral control strategy may be devised for them. A possible approach would be to try to extend thesolutions for disjunctive predicates to conjuncts of disjunctive predicates.Another interesting problem would be to study the (n� 1)-mutual exclusion problem more thoroughlysince we have demonstrated that it is a special and useful case of the k-mutual exclusion problem. Further,it may lead to insights into solutions for the k-mutual exclusion problem for large k.References[1] S. Bulgannawar and N. H. Vaidya. A distributed k-mutual exclusion algorithm. In Proceedings of the15th International Conference on Distributed Computing Systems, pages 153 { 160. IEEE, 1995.[2] T. Casavant and J. Kuhl. A taxonomy of scheduling in general purpose distributed computer systems.IEEE Transactions on Software Engineering, 14(2):141{154, February 1988.10

www.manaraa.com

[3] K. M. Chandy and J. Misra. The drinking philosophers problem. ACM Transactions on ProgrammingLanguages and Systems, 6(4):632 { 646, October 1984.[4] E. W. Dijkstra and C. S. Scholten. Termination detection for di�using computations. InformationProcessing Letters, 11(1):1 { 4, August 1980.[5] E. N. Elnozahy, D. B. Johnson, and Y. M. Wang. A survey of rollback-recovery protocols in message-passing systems. Technical Report CMU-CS-96-181, Dept. of Computer Science, Carnegie MellonUniversity, 1996.[6] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faultyprocess. Journal of the ACM, 32(2):374 { 382, April 1985.[7] V. K. Garg. Principles of Distributed Systems. Kluwer Academic Publishers, 1996.[8] S.-T. Huang, J.-R. Jiang, and Y.-C. Kuo. k-coteries for fault-tolerant k entries to a critical section. InProceedings of the 13th International Conference on Distributed Computing Systems, pages 74 { 81.IEEE, 1993.[9] D. R. Je�erson. Virtual time. ACM Transactions on Programming Languages and Systems, 7(3):404{ 425, July 1985.[10] E. Knapp. Deadlock detection in distributed databases. ACM Computing Surveys, 19(4):303 { 328,December 1987.[11] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of theACM, 21(7):558 { 565, July 1978.[12] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel programs with instant replay. IEEETransactions on Computers, C-36(4):471 { 482, April 1987.[13] A. Maggiolo-Schettini, H. Wedde, and J. Winkowski. Modeling a solution for a control problem indistributed systems by restrictions. Theoretical Computer Science, 13(1):61 { 83, January 1981.[14] K. Makki, P. Banta, K. Been, N. Pissinou, and E. Park. A token based distributed k mutual exclusionalgorithm. In Proceedings of the Symposium on Parallel and Distributed Processing, pages 408 { 411.IEEE, December 1992.[15] F. Mattern. Virtual time and global states of distributed systems. In Parallel and Distributed Algo-rithms: Proc. of the International Workshop on Parallel and Distributed Algorithms, pages 215 { 226.Elsevier Science Publishers B. V. (North Holland), 1989.[16] K. Raymond. A distributed algorithm for multiple entries to a critical section. Information ProcessingLetters, 30:189 { 193, February 1989.[17] M. Raynal. Algorithms for Mutual Exclusion. MIT Press, 1986.[18] M. Raynal. Distributed Algorithms and Protocols. John Wiley and Sons Ltd., 1988.[19] M. Singhal. A taxonomy of distributed mutual exclusion. Journal of Parallel and Distributed Com-puting, 18:94 { 101, 1993.[20] P. K. Srimani and R. L. Reddy. Another distributed algorithm for multiple entries to a critical section.Information Processing Letters, 41:51 { 57, January 1992.[21] A. I. Tomlinson and V. K. Garg. Maintaining global assertions on distributed sytems. In ComputerSystems and Education, pages 257 { 272. Tata McGraw-Hill Publishing Company Limited, 1994.11

www.manaraa.com

A Appendix: ProofsTheorem 8 SGSD is NP-completeProof: We �rst show that the problem is in NP. Given a sequence of global states, g, we have to checkthat it is a valid global sequence and that every global state in it satis�es B. In order to check that it is avalid global sequence, we check that each of the global states gk in g is consistent, that for all consecutivepairs of global states, gk � gk+1, and that restricting g to a single process i would produce either Si or astutter of it.� We can check that gk is consistent in polynomial time (by using vector clocks and examining allpairs of states from gk). There are only a polynomial number of global states in the global sequencebecause each global state in the sequence must contain at least one new local state.� We can check that gk � gk+1 in polynomial time by checking that 8i : gk[i] � gk+1[i] (using vectorclocks). Again, there are a polynomial number of global states in g.� For each of the processes, we can restrict g to i and check that the restriction is either Si or a stutterof it in polynomial time by starting at the beginning of the restriction and striking o� elements of Sievery time the state changes.� For each global state gk in g we need to check that it satis�es B. This can be done in polynomialtime since there are only a polynomial number of such states and B can be evaluated in polynomialtime.We now show NP-completeness by reducing the satis�ability problem of a boolean expression to SGSD.Let b be the given boolean expression and let it use m boolean variables x1; : : : ; xm. We de�ne adeposet, fS1; : : : ; Sm; Sm+1; ;g, such that for each Pi such that i 2 f1; : : : ; mg, Xi = fxig and Si consistsof exactly two states, ?i = sti in which xi is true and >i = sfi in which xi is false . We introduce anextra variable xm+1 such that for process Pm+1, Xm+1 = fxm+1g and Sm+1 is a sequence of three states?m+1 = st1m+1 in which xm+1 is true , sfm+1 in which xm+1 is false and the >m+1 = st2m+1 in which xm+1is true again. Note that there are no messages in the deposet. Now we de�ne B = b _ xm+1 so that it isobviously true in ? and in >.Given a global sequence for which every global state satis�es B, by the de�nition of a global sequence,there must be some global state containing the local state, sfm+1 where xm+1 is false . Since this globalstate must satisfy B, we can �nd a truth assignment from the states of P1; : : : ; Pm which satis�es b.Given a truth assignment which satis�es b, we construct a global state h containing sfm+1, and for eachSi such that i 2 f1; : : : ; mg, it contains sti if the variable xi is true in the given truth assignment or sfi ,otherwise. The sequence ?; h;> is a global sequence because each state is consistent (because there are nosynchronizations) and restricting it to each process Pi results in either Si or a stutter of it. The predicateB evaluates to true in ? and > because xm+1 is true and B evaluates to true in h because of the giventruth assignment.This shows that we can �nd a truth assignment to b i� we can �nd a global sequence in S which satis�esB. 2Theorem 9 SCSD and SGSD are equivalent.Proof: If we solve SCSD and �nd a satisfying control strategy, then we simulate a global execution of thesystem with the control strategy and �nd a satisfying global sequence.If we solve SGSD and �nd a satisfying global sequence g, then we can de�ne a satisfying control strategyas follows. 1

www.manaraa.com

First, we construct a controlled deposet, Sc, for which the only global sequence is g. Let g be thesequence g1; : : : ; gm. For every distinct pair of global states gk and gl (k < l and k; l 2 f1; : : : ; mg) considerevery pair of local states gk[i] and gl[j] of distinct processes Pi and Pj . If gk[i] 6= gl[i] and gk[j] 6= gl[j] andgk[i]6!gl[j] then we impose gk[i] C;gl[j]. It is clear that C; doesn't interfere with ! and that every globalstate in g is consistent for C!. Every global state not in g is inconsistent for C! because it must consistof at least two local states which uniquely belong to distinct global states of g. These local states mustbe connected by C; by our construction unless they are already connected by !. Thus, the only globalsequence allowed by Sc is g.We can now construct a control strategy enforcing Sc as the only computation as follows. For everys C;t, where s is a state of Pi and t is a state of Pj , ensure that controller Ci sends a control messagecontaining information (s; t) to Pj immediately after s. Immediately before t, controller Cj blocks Pj untilthe message (s; t) is received. It is easy to see that this ensures that Sc is the only possible computation.Therefore, the only valid global sequence obtained from this control strategy is g. Hence, this is a satisfyingcontrol strategy.Thus, SCSD and SGSD are equivalent decision problems. 2In order to prove Theorem 3 and Theorem 4, we prove the following lemma which expresses someuseful invariants of the outer while loop in the algorithm listed in Figure 1.Lemma 2Immediately before L2 the following invariant holds:C1: :SomeQueueEmpty(I) ^C2: 8i : g[i] � Ii:lo ^C3: 8i : (g[i]� Ii:lo))(g[i] = ?i _ (interval between g[i] and Ii:lo is a true interval)) ^C4: 9x; y : (Ix:lo6!Iy:hi ^ g[x] � Ix:lo) _ :(9 a satisfying global sequence) ^C5: 8i : g[i] = ?i _ g[i] � Ii:lo _ 9j : (g[i]!g[j] ^ g[j] � Ij:lo) ^C6: 8i; j : next(i)6!g[j]Proof:C1 is invariant directly from the while loop condition. This establishes that 8i : Ii is always a well-de�ned interval at L2. We use this property implicitly in the remainder of this proof.We now prove C2 ^ C3 ^ C4 ^ C5 ^ C6 by induction on the number of occurrences of L2 in theexecution of the algorithm.Base: At the �rst occurrence of L2:C2: obvious fde�nition of ?gC3: obviousC4: if :(9 a satisfying global sequence), we are done.so assume 9 a satisfying global sequenceso 9x; y : (Ix:lo6!Iy:hi) fLemma 1gso let (Ix:lo6!Iy:hi)g[x] = ?x � Ix:lo fA1, de�nition of false-intervalgso 9x; y : (Ix:lo6!Iy:hi ^ g[x] � Ix:lo)C5: obviousC6: obvious fD1, de�nition of ?i g 2

www.manaraa.com

Induction: Let IH refer to the inductive hypothesis. We use primed variables (e.g. g0; I 0) to indicate theirvalues in the current occurrence of L2 and unprimed variables (e.g. g; I) to indicate their values in theprevious occurrence. Lines numbers in the algorithm refer to their occurrences in the previous iteration(corresponding to IH).C2: g0[l] � I 0l :lo fL10, L11, order of I [l] is �g8i 6= l : g0[i] � I 0i :lofif loop L7 iterates then by fL8, L9, defn. of nextg else by fIH C2ggso 8i : g0[i] � I 0i:loC3: let i 2 f1; : : : ; ngif g0[i] 6� I 0i :lo then we are done.P1 so assume g0[i] � I 0i:loconsider two cases:Case 1: g0[i] = g[i]I 0i = Ii fCase 1, L7, L8, L9gso we are done. fIH C3gCase 2: g0[i] 6= g[i]consider two cases:Case 2.1: i = lg0[i] is hi of interval immediately before I 0ifCase 2.1, L10, L11gso interval between g0[i] and I 0i:lo is a true intervalfde�nition of intervals, I [i] ordered in �gCase 2.2: i 6= lg0[i] is hi of interval immediately before I 0if�nal iteration of L7-9, by P1: g0[i] 6= I 0i:logso interval between g0[i] and I 0i:lo is a true intervalfde�nition of intervals, I [i] ordered in �gC4: if :(9 a satisfying global sequence), we are done.so assume 9 a satisfying global sequenceso 9x; y : (I 0x:lo6!I 0y:hi) fLemma 1gP2 so let (I 0x:lo6!I 0y:hi)if g0[x] � I 0x:lo then we are doneso assume g0[x] 6� I 0x:loP3 so g0[x] = I 0x:lo fC2 aboveg8i 6= l : (g0[i] = g[i]) _ fif loop L7 doesn't iterateg(g0[i]!g0[l])fL7, L8, L9 ensure that at the end of the loop, next0(i)!Il:hi.by de�nition of next(i): g0[i] � next0(i).so g0[i]!Il:hi.by L10: g0[l] = Il:hi.so g0[i]!g0[l].gP4 so 8i : (i = l) _ (g0[i]!g0[l]) _ (g0[i] = g[i])so we have 3 cases for x:Case 1: x = l 3

www.manaraa.com

P5 g0[l] � I 0l :lo fL10, L11gP6 g0[x] = g0[l] fCase 1gP7 I 0x:lo = g0[x] fP3gso I 0x:lo � I 0l :lo fP5, P6, P7gP8 so I 0l :lo6!I 0y:hi fP2gso 9x; y : (I 0x:lo6!I 0y:hi ^ g0[x] � I 0x:lo) fP5, P8gCase 2: g0[x]!g0[l]P9 g0[l] � I 0l :lo fL10, L11gP10 g0[x]!g0[l] fCase 2gP11 I 0x:lo = g0[x] fP3gso I 0x:lo!I 0l :lo fP9, P10, P11gP12 so I 0l :lo6!I 0y:hi fP2gso 9x; y : (I 0x:lo6!I 0y:hi ^ g0[x] � I 0x:lo) fP9, P12gCase 3: g0[x] = g[x]P13 g[x] 6= ?x fP3, Case 3, A1, de�nition of intervalgIx = I 0x fCase 3, L7, L8, L9gP14 so g[x] = Ix:lo fP3, Case 3g9j : g[x]!g[j] ^ g[j] � Ij:lo fIH C5, P13, P14gP15 so let g[x]!g[j] ^ g[j] � Ij:lowe have 3 cases for j: fP4gCase 3.1 j = lP16 g0[l] � I 0l :lo fL10, L11gP17 g0[j] = g0[l] fCase 3.1gP18 g[j] � g0[j] fCase 3.1, L2, L4, L10, L11gP19 g[x]!g[j] fP15gP20 g0[x] = g[x] fCase 3gP21 I 0x:lo = g0[x] fP3gso I 0x:lo!I 0l :lo fP16 - P21gP22 so I 0l :lo6!I 0y:lo fP2gso 9x; y : (I 0x:lo6!I 0y:hi ^ g0[x] � I 0x:lo) fP16, P22gCase 3.2 g0[j]!g0[l]P23 g0[l] � I 0l :lo fL10, L11gP24 g0[j]!g0[l] fCase 3.2gP25 g[j] � g0[j] fCase 3.2, L7, L8, L9, de�nition of nextgP26 g[x]!g[j] fP15gP27 g0[x] = g[x] fCase 3gP28 I 0x:lo = g0[x] fP3gso I 0x:lo!I 0l :lo fP23 - P28gP29 so I 0l :lo6!I 0y:lo fP2gso 9x; y : (I 0x:lo6!I 0y:hi ^ g0[x] � I 0x:lo) fP23, P29gCase 3.3 g0[j] = g[j]I 0j = Ij fCase 3.3, L7, L8, L9gP30 so g0[j] � I 0j :lo fP15, Case 3.3gP31 g[j] = g0[j] fCase 3.3gP32 g[x]!g[j] fP15gP33 g0[x] = g[x] fCase 3g4

www.manaraa.com

P34 I 0x:lo = g0[x] fP3gso I 0x:lo!I 0j :lo fP30 - P34gP35 so I 0j:lo6!I 0y:lo fP2gso 9x; y : (I 0x:lo6!I 0y:hi ^ g0[x] � I 0x:lo) fP30, P35gC5: let i 2 f1; : : : ; ngwe have three cases for i: fP4gCase 1: i = lg0[l] � I 0l :lo fL10, L11gso g0[i] � I 0i :lo fCase 1gCase 2: g0[i]!g0[l]g0[l] � I 0l :lo fL10, L11gso g0[i]!g0[l] ^ g0[l] � I 0l :lo fCase 2gCase 3: g0[i] = g[i]Ii = I 0i fCase 3, L7, L8, L9gso g0[i] = ?i _ g0[i] � I 0i:lo _ 9j : (g0[i]!g[j] ^ g[j] � Ij:lo)fIH C5, Case 3gif g0[i] = ?i _ g0[i] � I 0i:lo, we are done.P36 so let g0[i]!g[j] ^ g[j]� Ij :lowe have three cases for j: fP4gCase 3.1 j = lg[l] � g0[l] fL2, L4, L10, L11gP37 so g0[i]!g0[l] fCase 3.1, P36gg0[l] � I 0l :lo fL10, L11gso g0[i]!g0[l] ^ g0[l] � I 0l :lo fP37gCase 3.2 g0[j]!g0[l]if g0[j] = g[j] then same as Case 3.3.so let g0[j] 6= g[j]so g[j]� g0[j] fCase 3.2, L7, L8, L9gP38 so g0[i]!g0[l] fP36, Case 3.2gg0[l] � I 0l :lo fL10, L11gso g0[i]!g0[l] ^ g0[l] � I 0l :lo fP38gCase 3.3 g0[j] = g[j]Ij = I 0j fCase 3.3, L7, L8, L9gso, g0[i]!g0[j] ^ g0[j] � I 0j :lo fCase 3.3, P36gC6: let i; j 2 f1; : : : ; ngwe have 3 cases for j: fP4gCase 1: j = lnext0(i)6!g0[l]fif (i = l) then by fde�nition of nextg else by fL7, L8, L9, L10ggso next0(i)6!g0[j] fCase 1gCase 2: g0[j]!g0[l] 5

www.manaraa.com

next0(i)6!g0[l]fif (i = l) then by fde�nition of nextg else by fL7, L8, L9, L10ggso next0(i)6!g0[j] fCase 2gCase 3: g0[j] = g[j]P39 next(i) � next0(i) fde�nition of next, IH C2, Case 3, L7 - L9gnext(i)6!g[j] fIH C6gso next0(i)6!g0[j] fCase 3, P39g2Theorem 10 The procedure in Figure 1 terminates.Proof: We must show that each term used is well de�ned in the execution and that each loop terminates.The terms which may be unde�ned are:� Ij for j 2 fl; x; y; k; ig used throughout the program. Ij is an abbreviation of head(I [j]), which is notde�ned if I [j] is empty.{ at L2 use of Ix; Iy: Lemma 2:C1 states that no queue in I is empty at the start of L2. So theusage is valid.{ at L5 use of Ik: because of Lemma 2:C1 and since there are no dequeue's between the startof L2 and the start of L5.{ at L7 use of Il: because of Lemma 2:C1 and since there is no dequeue of I [l] between the startof L2 and an occurrence in L7.{ at L10 use of Il: same as above.{ at L14 use of Ik: The check in L0 makes sure that the outer while-loop iterates at least once.Consider the �nal iteration of the loop. At L4, a k0 is chosen and I [k0] cannot be dequeued atL9 because L2 and L7 ensure that the loop L7-9 never iterates for P 0k. Since k0 6= l, it can't bedequeued at L11. Queue I [k] was not changed in the last iteration. At the start it couldn't havebeen empty because of Lemma 2:C1. So it is non-empty at the end. Since there is dequeuefrom then until L14, the usage is valid.{ in the de�nition of next: this is valid because the de�nition �rst checks if I [i] is empty.� any(A) at line L4. A must not be empty and this is ensured in L3.� next(i) at lines L7 and L8. At the start of L2, by Lemma 2:C2 8i : next(i) is valid. Lemma 2:C2is also an invariant at the start of L8 in the inner while-loop (though not at the start of L9). Hencethe usage of next(i) is valid.� dequeue's The dequeue in L15 is always preceded by at least one enqueue and is the only dequeue ofC. The dequeue at L11 is valid because of Lemma 2:C1. The dequeue at L9 is valid because thede�nition of next, D2, and the termination check in the inner while-loop prevents a dequeue whenI [i] is empty.We now show that the loops must terminate.� The inner while-loop terminates because the queue I [i] is �nite and keeps reducing every two it-erations. In the worst case, by the de�nition of next, the loop must terminate when I [i] becomesempty. 6

www.manaraa.com

� The for loop has a �nite index range.� The outer while loop terminates because I is �nite and reduces by at least one interval (L11) in everyiteration.2Theorem 11 The algorithm in Figure 1 correctly solves the O�-line Predicate Detection Problem forDisjunctive Predicates.Proof: There are three parts:Part 1: If the algorithm exits with \No Controller Exists" then there is no controller which satis�es B.Proof: Lemma 2:C4 is true at the start of L2. This ensures that at L3 A is empty only if there is noglobal sequence which satis�es B. Since any controller which satis�es B can be executed to produce aglobal sequence which satis�es B, there can be no controller which satis�es B.Part 2: The output, C, is a valid C; relation that does not interfere with !.Proof: It is easy to see that C de�nes a relation on states of deposet S. We must show that C; causes nocycles with !. We consider two cases - cycles containing exactly one C; tuple and cycles containing twoor more C; tuples.� Claim: There are no cycles containing exactly one C; in the transitive closure of C; and !.We prove this by contradiction. Let there be such a cycle with a tuple added in either line L5 or inline L14 as g[k0] C;Ik:lo. We consider these two cases together.P40 g[k0] C;Ik:lo fgivengP41 Ik:lo = next(k) fThere must be a previous iteration of the outer whileloop because: in the case of g[k0] C;Ik:lo being addedin L5, it can't be the �rst iteration because that tuplewould be dequeued in line L15 and in the case of its beingadded in L14, the check in line L0 would make sure that theloop iterates at least once. In the previous iteration, L2,L4 indicate that the k0 for that iteration (the k in ourcurrent iteration) is such that g[k0] � I 0k:lo. This wouldremain una�ected by the loop in lines L7 - L9 because of theconditions in L2 and L4. So after line L12, this changes tog[k] � Ik:lo. By the de�nition of next, Ik:lo = next(k).gnext(k)6!g[k0] f Lemma 2:C6 is true before L2. It remains true untilL5. We can show in a similar manner as the inductive stepof the proof of C6 that it remains true until L14.gP42 so Ik:lo6!g[k0] fP41gP40 and P42 contradict the existence of a cycle in the transitive closure of ! and C; with a singleC; tuple, g[k0] C;Ik:lo.� Claim: There are no cycles containing two or more C;'s in the transitive closure of C; and !.Again, we prove this result by contradiction. Let there be such a cycle. Let the superscript m on avariable (e.g. gm, k0m) represent its value afterm iterations of the outer while loop. So gm[k0m] C;Imkm :lorepresents the C; tuple in the cycle added afterm iterations of the outer while loop. Let gi[k0i] C;I iki:lobe the last C; tuple in the cycle to be added in the algorithm and let gj[k0j] C;Ijkj :lo be the next C;tuple in the cycle. 7

www.manaraa.com

P43 so I iki :lo!gj[k0j]P44 gj[k0j] � gi[k0j] fsince i > j and g advances w.r.t. � with each iterationgI iki :lo = nexti(ki) ffollowing the same reasoning as in the previous ClaimgP45 so, nexti(ki)!gi[k0j] fP43, P44gP46 nexti(ki)6!gi[k0j] ffollowing the same reasoning as in the previous ClaimgP45 and P46 are contradictory.Part3: For every consistent global state, g, in the new controlled deposet with the new C! partial orderB(g) is true .Proof: We use the same notation used in the second Case in Part 2. Let there be m iterations of theouter while loop in the algorithm. Therefore we have m tuples of C;, m � 1 of which are added in L5 inthe loop and the last is added in L14 after the loop terminates. Each of these correspond to:P47 gi[k0i] C;I iki:lo for i 2 f1; : : : ; mggi[k0i] � I ik0i :lo for i 2 f1; : : : ; m� 1g fL2, L4 (note: (i = m) excluded)gP48 so gi[k0i] = ?k0i _ (interval between gi[k0i] and I ik0i:lo is a true interval) for i 2 f1; : : : ; m� 1gfLemma 1:C3gWe simplify the notation as:P49 (bpi; tpi) = (gi[k0i]; I ik0i:lo) for i 2 f1; : : : ; m� 1gwhere pi = k0iWe de�ne:P50 (bp0; tp0) = (?p0 ; I1k1:lo)and:P51 (bpm; tpm) = (gm[k0m];>pm)P52 so (bpi ; tpi) strictly includes a true interval for i 2 f0; : : : ; mgffor i 2 f1; : : : ; m� 1g: P48, using A1 if bpi = ?pifor i = 0: we can show from the algorithm that I1k1 :lo is thestart of the �rst false intervalfor i = m: L13 shows that g has crossed the last false intervalgI ik0i:lo = I i+1ki+1 :lo for i 2 f1; : : : ; m� 1gfL2,L4 ensure that I [k0] is not a�ected in the loop L7-L9 andL12 makes k0 into k for the next iterationgP53 so bpi+1 C;tpi for i 2 f0; : : : ; m� 1gf P47, P49, P50, P51gNow, we prove by contradiction. Assume G is a consistent global state in the controlled deposet for which8i : :li(G[i])Claim: 8i 2 f0; : : : ; mg : tpi � G[pi]We prove this claim by induction:Base: tp0 � G[p0] fP50, A1, P52, de�nition of ?p0gInduction:tpi � G[pi] finductive hypothesisgso bpi+1 C!G[pi] fP53gso G[pi+1] 6� bpi+1 fotherwise, G[pi+1] C!G[pi] violating consistency of Ggso bpi+1 � G[pi+1]so tpi+1 � G[pi+1] fP52g2fClaimg 8

www.manaraa.com

In particular:tpm � G[pm]so G[pm] = >pm fP51, de�nition of >pmgThis contradicts A12Theorem 12 The On-Line Predicate Control Problem for Disjunctive Predicates is impossible to solve.Proof: We prove impossibility by contradiction. We assume that there is a solution and demonstrate itsinvalidity using a counterexample. Our counterexample is for the case n = 2 for simplicity. It is easy toextend it to the general case of n processes. The counterexample consists of a deposet S and a disjunctivepredicate B that is feasible for S. We show that any control strategy that is de�ned on-line could be forcedto deadlock.Let S1 = st11; sf12; st13 and let S2 = st21; sf22; st23. Let B = l1 _ l2 be the disjunctive predicate. Thesuperscripts of the states indicate whether they are true or false with respect to the corresponding localpredicate.The distributed strategy starts with control in the global state (st11; st21) and is aware of the nextevents and states but is ignorant of what comes after the second states. Since the situation is perfectlysymmetrical, it has a choice of any of two possible next global states in the global sequence correspondingto which process advances. Without loss of generality, let P1 advance so that the next global state is(sf12; st21). (Note that (sf12; sf22) would cause B to be violated.) After this decision is made, we play theadversary and impose sf22 ; st13. This would mean that P1 has to wait at sf12 for a message to be receivedfrom P1 after state sf22. The system cannot advance to (sf12; sf22) because this would violate B. Hence, thesystem is deadlocked.Our counterexample is not valid until we show that B was indeed feasible for S . This is demonstratedby the global sequence, (st11; st21); (st11; sf22); (sf12; st23); (st13; st23), which satis�es B.2Theorem 13 The distributed control strategy listed in Figure 2 does not deadlock.Proof: The only wait involved is when the scapegoat is waiting for an ack. This is guaranteed to arrivebecause every process in a false state will eventually reach a true state (by A2 and A3). Therefore, therecan be no deadlock. 2Theorem 14 The distributed control strategy listed in Figure 2 satis�es B.Proof: It is easy to prove by structural induction that in every possible global state the number ofscapegoats in the system is strictly greater than the number of acknowledgment messages in the system.This indicates that there is at least one scapegoat in every possible global state. The strategy also ensuresthat the scapegoat is true . This ensures that every possible global state satis�es B. 29

